Electron-ion collisions in intensely illuminated plasmas
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In the presence of a high-frequency intense uniform electric field, the collisions of electrons with
ions can be made more frequent or less frequent, depending on the polarization of the hf field, the
direction and magnitude of particle velocity, and the ratio of the plasma Debye length to the size of
the electron oscillation in the hf field. The stimulated bremsstrahlung emission is calculated for both
circularly and linearly polarized fields. @997 American Institute of Physics.
[S1070-664X%97)00802-1

I. INTRODUCTION tions of electrons, in fact, make contributions of different
sign to the overall energy exchange with a wave.

The presence of an electromagnetic wave alters electron- The paper is organized as follows: In Sec. Il we consider
ion collisions, thereby also altering the rate of inversetwo simple examples of scattering of an oscillating electron
bremsstrahlund=® The pioneering papers of Dawson and on a single ion—when the hf field is linearly polarized in the
Oberman and Silirf analyzed the linedrand nonlines&  direction of the slow drift of the oscillation center of the
high-frequency collisional resistivity of the plasma. Both particle and when hf field is circularly polarized in the plane
models subscribed to the same physical picture—the waveormal to the direction of the oscillation center drift. Corre-
dissipation arises from a Maxwellian distribution of elec- lated collisions, which arise because of the repeated interac-
trons, oscillating in a spatially uniform electric field, and tions of an oscillating electron with the same ion, are quan-
colliding with a random field of stationary ions. These twotified for these two exactly tractable cases. Qualitative
calculations were carried out using slightly different tech-insights obtained from these examples will be utilized in Sec.
niques for describing electron-ion collisiofkandau colli-  1ll, where we derive an averaged energy, exchanged between
sional integral in Ref. 2 versus explicit random-phase averan oscillating electron and hf field, in the presence of a ran-
aging over ion positions in Ref.)1Deckeret al® recently ~dom ensemble of immobile ions. We find that the effect of
extended Dawson’s technique to large hf fields and coneorrelated collisions is naturally included in the nonlinear
firmed the nonlinear results of Silin. Dawson-Oberman model, thus making an introduction of the

These calculatiorts® all begin by assuming a Maxwell- ad hoccorrelation coefficientas suggested in Ref) 8nnec-
ian distribution of the electrons, so that the average effect oéssary. Section IV concludes and outlines the directions for
the full distribution of electrons is calculated. This obscuresfuture work.
possibly interesting effects that may arise in the collisions of
individual electrons with ions in the presence of hf field. An
attempt was made to describe a so-called “correlated coIIi!I' COLLISIONS WITH A SINGLE ION
sion” of an oscillating electrof,but a formal treatment of a Consider the scattering on an infinitely heavy ion, in a
collision of a test electron with an ion was not carried out.charge state, of a single electron, oscillating in a dipole
The more formal treatment here shows that these correlataglectric field
collisions are, in fact, already treated in the calculation of . . .

Dawson and Oberman, modified to include finite hf fields. ~ E(r,t)=E sin wt )
Some other effect would be required to explain the appar

ently enhanced energy exchange with the wave found in NYsq,1omp field of the ion is considered a first-order perturba-

merical s.imulatior_1§. _ - tion to the zeroth-order motion of the electron, which con-
We find at high laser intensities the appearance of Qsts of drift and quiver. This implies that the frequency of

number of new effects, in addition to inverse bremsstrang|ectron-ion collisions is much smaller than the frequency of

lung, all due to the discrete nature of the plasma, and all Ofi¢ fie|q. This assumption is violated for slow electrons,
which require @ much more detailed understanding ofhich are subject to a reduced rate of inverse bremsstrah-
electron-ion binary collisions. The purpose of this paper is tqung as shown by LangddhHowever, here we are con-
analyze scattering, on an ensemble of Debye-shielded i0Nggmeq mainly with the fast electrons at the tails of the dis-
of a single oscillating electron, drifting with arbitrary veloc- {.n tion function. where the main deviations from
ity. This enables us not only to calculate the rate of inversqyaywellian occur. By considering a dipole electric field, the
bremsstrahlung for a Maxwellian plasma, but also the rate of5icyjation simplifies considerably. In a uniform electric
inverse bremsstrahlung for an arbitrary distribution of elec+ig|q 4 canonical transformation to the oscillating frame ex-
trons. This generality is important, because different populajgts \which makes the drift momentum of the electron and the
position of its oscillating center canonical variables. In non-
3Electronic mail: gena@pppl.gov relativistic dynamics, used throughout this paper, the infinite

and drifting freely alongz axis with velocityv=ve,. The
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phase velocity of the wavéorresponding to uniform fiejJd  dielectric function of the plasma. In a reference frame of an
is invariant under Galilean transformations. Parentheticallypscillating electron, ions are oscillating with frequeney

in relativistic dynamics, the calculations simplify by assum-Hence, the ion field that the electron experiences, consists of
ing that the phase velocity of the wave is precisely equal tdoth a dc componentDebye-shielded by other electrons
the speed of light in a vacuumwhich similarly remains and ac components at harmonics @& o, (unshieldeg

invariant under Lorentz transformations. Hence, we choose(k,t—t’) to be such that
For an electromagnetic wave, propagating with phase K2
velocity vy, close to the speed of light in vacuum, the wave T(k,Q=0)=
. . . 1 2 2
frequency is in the regime w>w,, where k“+kp
w,=(4mne’/m)¥? is the plasma frequency, ang, —e, (6)

and m are electron density, charge, and mass. The dipole T(k,Q=nw)=1,

field, Eq.(1), approximates an electromagnetic wave of finite

wavelength\ o= 2mc/w, when(i) vys<C, so that the high- where

frequency electron motion is unaffected by the field inhomo-

geneity; and(ii) v<c, so that the Doppler shift of the fre- ’E(k,Q)zf dr e 7e(k, 1),

guency of the electromagnetic wave, caused by the drift

motion of the electron, is negligible, thus avoiding wave-and k3 =4me’n,/mv’ . To remove large-angle collisions,

particle resonances. we soften the Coulomb potential at distances smaller than the
In addition, much of our attention will be devoted to the distance of closest approach by choosihgk) as

regime where the wavelength of the hf wakg is much

larger than the Debye lengthp =vn/wp. In this regime, U( ):(iz_ 1 Zw) )

electron-ion collisions dominate over electron-electron colli- k* K+ Kia

sions in dissipating the energy of an electromagnetic WaVE; 1ok

This dominance arises because, to exchange energy, the ri‘r% COmax=1/b. This procedure for “softening” the diverg-

- o i ulomb potential for small distances was originally
product quE, summed over the colliding particles, must g qqested, in the context of electron-ion collisions in a mag-
change in a collision. Becausg =v,/wp, the electric field [ atizeq plasma, by Montgomest al® For the ideal plasma

is constant over a Debye length, i.e., for all collisions. Thenqnsidered here\p> b, so, effectively, for small-impact col-
there is no energy dissipated in electron-electron collisionsgionsz~1.

since these collisions conserve current. _ ~ Note that the precise procedures for “softening” the
~ We consider small-angle collisions, introducing an arti- coyjomb potential at small distances and Debye shielding at
ficial cutoff at impact parametes=b, whereb is the dis-  |5rge distances do not affect the final result. An equally ac-

tance of closest approach, given by curate description of these effects can be achieved by, for
27¢? example, limiting the integration domain ik-space to
b=,z (2 |k|<Kmax» USING
.- . - 1
The validity of assuming that the collisions are small-angle U(k)= FH(kmax_ k), )

for p>b is discussed later in this section. The zeroth order

electron trajectory is given by whereH(x) is a Heaviside step function. The choice of the

Fo(t)=ﬁ+5-(t—tj)— go sin ot 3) ion pot(_antials in the forms7), (8)_in this sectio'n enab!es us

to obtain the closed form solutions for two illustrative ex-

where amples, analyzed below. In Sec. Il a slightly different form
o of the ion potential will be used,

€=~ 7, (4) 1 1 1
" w0= 4| ) ®

and where; characterizes the electron phase with respect to

hf field, and can be chosen such that &t; <2 which, like Eqgs.(7), (8), removes the large angle collisions.
Consider now a small-angle scattering of an electron  To calculate the rate of electron-ion collisions, assume,

moving along its zeroth-order trajectory, given by E8), by yithout loss of generality, thai=6,p, thus fixingx-z to be

a stationary Debye-shielded ion at the origin. The force actyg collision plane, with directiom chosen to be along the

ing on the electron, moving along its trajectory(t), is instantaneous electron velocity. In the absence of the laser

given by field, the x-component of the ion force could be integrated
¢ d3k betweent= —« andt= +, obtaining the deflection angle
ﬁion(t)=i47-r2e2f dt’f (2—)3U(k) 60= v, /v as a function of impact parameter. The rate at
— aa

which the colliding electron gains transverse momentum
xf(k,t—t’)lZe”z'FeW), ®) leads, for elg\stlc scattering, to a decrease pby amount

ov,=v-(66)7/2 to conserve energy. In the presence of hf
whereU (k) is a three-dimensional Fourier transform of the field, however, electron-ion collisions are not necessarily
unshielded ion potential, andk,t—t') is a time-dependent elastic, so that calculating the deflection angle gives only a
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pitch-angle contribution to the scattering rate. Calculatingwhere
66 in this manner, however, allows us, among other things, > >
to discuss the possibility of correlated collisions, introduced ~ an= VKot Kinax
in Ref. 3.

Integrating Eq(5) over time, and using Eq$3) and(7),
then gives the deflection angle

and we made use of Eqll) in calculating theU,(k), re-
sulting in the analytical expressid@6).

In Eq. (16), the n=0 term is separated from the other
4nze? " f 3 terms to make obvious that only time=0 term in the series

——3Un(K)keJIn(K- €9) is independent of; . In Sec. lll we show that onlyy # 0

mu n=—ow (277)3

terms contribute to the energy exchange between the wave
L[+ e - and the electron. Hence, we call the-0 contribution to the
Xe'k"’f dt gtkvmneteikut, (100 scattering “elastic.” In the absence of the hf field, the
o n=0 term is the only term contributing to the scattering,
where which is only in pitch-angle. Fdo<<p<\p, the elastic term
_ ~ is approximately equal tb/p, which reduces to the Ruther-
Un(k)=U () e(kinw). 1D ford formula. Note that then=1 terms are exponentially
Performing first the time integration and introducing asmall in nwp/v. Thus forp>v/nw, there is little interac-
spherical coordinate system, with tion, since the collision time is much longer than the wave
period. For both elastic and inelastic contributions, the sec-
ond term in square brackets in E46) is a consequence of
ky,=k sin 6 cos ¢, (120  the softening of the ion potential fgs<b; it makes the
infinite series of Eq(16) converge.
The rate of pitch-angle scattering,;, is defined by

k,=k cos#,

ky=Kk sin ¢ sin ¢,
simplifies Eqg.(10) to

v (860)%(p)
. 47TZe2 n=-+x B s kde o IniJ‘ 27Tp dp T :1, (17)
50:'? 2 e Inwtjj Wun(k) do ei
veon=oe 0™ 0 wheren; is the ion density, and where we have used the fact
1 o that the deflection angléf only depends on the magnitude
Xf ld(COS 0)sin 6 cos pe'ke i cosé of the impact parametésomething that is not true when the
electric field is polarized at an angle to the particle velgcity
X Jn(K- €0)2m8(cos O—nwlkv). (13)  Angular brackets in Eq(17) denote averaging over the ran-

] ] __dom particle phaset; . Substituting Eq(16) into Eq. (17),
Note that only those Fourier components of the spatially inptain

homogeneous stationary field of the ion, which resonate with

some harmonic of the electron quiver, contribute to particle , )
deflection. vei= mubn;) In Ag+ nzl 23 (nweo/v)

n=+wx

A. Oscillations along velocity

1 n2e? kﬁqa)pz
For a hf field polarized in the direction of particle mo- XI5tz 2 In| 1+ W) —1“, (18
tion, Eq.(13) reduces to ma/

where A o= In(knax/kp) is the Coulomb logarithm.

n=+o
S0=— 22e22 > e*inwtj\]n(nweo/v)f dk kU,(k) In practice, the number of terms necessary to keep in the
Mo~ n==-c Kon series(18) is finite, since the expression in square brackets in
Eqg. (18) becomes small fornwb/v>1. Keeping only
X xpd , 14 : .
Xnd1(xnP) (14 Nmax=v/wb and assuming thatwb/v <1, one obtains
where kg,=nw/v and )(n=\/k2—k02n. Using the integral nen
\dentity ver= =3| N(knada) + 3 ZJﬁ(nweo/v)ln(kmwp/nw)},
o0 X2 n=1
fo X7z di(ax) =kKy(ak), (15 (19
] where
we obtain
b _ 4wZ%"n, 20
86=— " TkopK1(kop) = ko + knabKi(Vkp +Kinp)] m
he to For comparison, note that the classical expression for the rate
f electron-ion collisions in the absence of an external hf
- = 2cognowt;)[KonpK1(k 0
p ngl #not;)[konpKa(Konp) electric field is
Nweg A
—0anpK1(dnp) 19y , (16) vo(v) =73 In A,. (21)
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Comparing Eq(19) to Eq.(21) shows that th&@=0 (elastig ~ the absence of external field, the deflection angfe-b/p.
term is identical to scattering rate in the zero-field case. Requiring 86<1 implies p> b, justifying the smoothing of
The analytic solution presented here facilitates a considthe Coulomb potential for distances smaller tHanin the
eration of the recent conjecture of correlated collisibns. presence of external field, an estimate of #iteis obtained
Deckeret al. conjecture that the nonlinear extension of theby using Eq.(16). The contribution of the inelastic terms to
Dawson-Oberman model to,,>>v, developed in Ref. 3, angular deflection depends on the relative phase between the
may not adequately describe the subtle effect of an electroelectron and the hf field. The largest angular deflection, for
repeatedly returning back to the same ion in the course of itfixed impact parametes, is experienced by electrons with
oscillation. They argue that the collision frequency, analyti-t;=0 andvs/v~1. The latter condition is derived from the
cally obtained from the nonlinear Dawson-Oberman modelfact the first zero of the Bessel function of ordeis always
has to be multiplied by a numerical factor, roughly equal tolarger thann, so all the terms in the series add up with
the number of oscillations an electron makes as it crosses thmositive signs. The contribution of the inelastic terms then
Debye sphere of an ion. This numerical factor is found to bedominates over the elastic term for small distances, resulting

C~w/wp.3 in

In comparison, Eq(18) does not exhibit this large in- b
crease in collisional frequency by the fac@rfor the regime 50— —. (23
VoS V. TO see this immediately, take E(L8) in the limit Kop

w—c, keeping the oscillation velocity,w fixed, and find  Hence, the cutoff for small-angle scattering is actually at the
the zero field collision frequency, given by EQ1L). Now |arger distance,~ b/ko.
this result is clearly expected; as the oscillation amplitude  This increase in scattering can be traced to correlated
decreases, the particle spends exactly the same amount &llisions, since the electron stays longer in the vicinity of an
time in the vicinity of any point along its trajectory as it jon. In this paper, for simplicity, this refinement of the cutoff
would in the absence of the hf field. The qualitative expla-is neglected, becausg) for most electrong; # 0, hence dif-
nation of Ref. 3 must fail here. While an oscillating electronferent orders of inelastic contribution may interfere destruc-
may repeatedly pass by the same (as noted in Ref. Bthe tively; (i) we are mainly concerned here with strongly illu-
amount of time it spends in the vicinity of this ion is simi- minated p|asma5, WithOSC>01 where the contribution of the
larly reduced. Clearly, there is no need to introduce addiinelastic terms is smaller than that of the elastic term.
tional numerical factors to understand the role of correlated  Note that here only the rates of pitch-angle scatterings
collisions in the case presented here. Note that, in the case gfe calculated, which are sufficient here for describing mo-
very high oscillation velocity ,s&v, simply replacing the mentum transfer. In Sec. Il the rates of energy-exchanging
particle velocityv by vosin Eg.(21) leads to a much smaller collisions are studied. These collisions, which produce
collision frequency than predicted by EQ9). Here, in com-  premsstrahlung or inverse bremsstrahlung, are described en-
parison to this replacement, the collision frequency does apirely by inelastic terms.
pear to be enhanced because collisions are correlated. In-
deed, while the electron speed is equad tg., it does return B, Circularly polarized wave
back to the same ion during the next cycle of oscillation.
For an electron drifting in the direction of the electric
field with velocity approximately equal to the velocity of its
oscillation, the largest increase in the collisional frequency

Consider now the scattering on a single ion of an elec-
tron, which oscillates in the field of a circularly polarized
(CP) EM wave. For simplicity, the plane of polarization is
chosen perpendicular to the direction of the electron motion.
Vei> vo(v) (22) The zeroth order electron trajectory is then given by

is expected, because of the stagnation points along the elec- To(t)=p+v-(t—tj)—€o(&, Sin wt+e, coswt). (24

tron trajectory, where its total speed is close to zero. Neap cajculation similar to that leading to EqL4) yields
those points an electron spends more time near the ion,

thereby increasing the mean squared scattering afgle 2ze """ Cinoti—ar2) 9 [

This effect is accounted for in the present formalism. The " mo? n;_w € : %fkmdk KUn(k)

effect of the stagnation points along the electron trajectory

becomes most pronounced wheg~v. Consequently, Eq. X In(Xn€0)In(Xnp), (25)

(19 indicates that the net increase in the collision frequencyynich can be simplified to give
is maximized for voe~v [since Bessel functions I
J2(nv4sc/v) achieve their maxima atos/v~1]. 3 <

Note that the conclusion that the collision frequency in-2¢= ~PCo(p.€0) +b ngl 2 cognwt;—nm/2)Gn(p, €0),
creases in the presence of external fi€2@) is valid only (26)
when an electron travels in the direction of the hf field. In

. L . where

fact, as we show in the next example, a significant reduction
in the collision frequency can be expected for an electron Ggo=Kplo(kpeg)K1(kpp) if p>eg

traveling perpendicularly to the hf field

The validity of the assumption of small-angle scattering =koKo(kpeo)la(kpp) if p=<eo, @7
for electron-ion distances larger théncan be checked. In and
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Gn=Konl n(Kon€0) K (Konp) A -
n on' n\RONn€0/ ™ nihon Voi=—3 Ae|+ 2 Ai(,% , (30)
—Unln(dn€o)Ky(dnp)  if p>e€o v n=1
, where
=KonKn(Kon€o) 1 n(Konp) K 2
A= 2 2k e~ Kk
~QnKn(Gn€o) 1 1(dnp)  if p<eo. (28) o7 2 oot
In deriving Eq.(27), for ;> b, it was not necessary to soften +Ko(kp€o)Ka(Kpep) ]
the Debye-shielded Coulomb potential at small distances. (Kp€o)?
Note that for the amplitude of the electron oscillation much - D2° K2(kpeo)[ — 1 2(kpeo)
smaller than the Debye length, EQ7) simplifies to
Go=koKy(Kop) if p> e +1o(kp€o)l 2(Kpep) ], (3D
and
=kZ3p In(kpeo) if p<eq. (29) 1 1
A,<n>|:L e (32)
As Eq. (29) indicates, for small oscillation amplitudes " weg\ N \In?+ K2 w2 w?

€0,<p, the elastic contribution to the electron deflection for
the CP field is the same as in the previous example of th
linearly polarized(LP) field. However, when the impact pa-
rameter is smaller than the orbit size, E9) indicates that
the electron deflection may drop significantly éf<<Ap .
Physically, this is because, as soon as the electron’s orbit
large enough to cross the-z plane, ion kicks in positive

In evaluatingAi(,?gl, we assumed that,s&v. For eg<<A\p,
o~IN(\p/ey); in the opposite limit,eg>Ap, Ag can be
shown to scale ad o~ (2kpey) 1. This indicates that the
collision frequency drops by a significant factorlase, ap-
roaches unity. Apparently, as the size of the orbit exceeds
e Debye distance, the individual electron-ion collisions be-

. L . . : come less efficient, because electrons spend most of their
and negativex-directions destructively interfere with each _. . . . .
time away from the ion, where the ion field is Debye-

other. In fact, for thainshieldedCoulomb potential, the can- .

L .. _shielded by other electrons.
cellation isexact The amount of uncanceled scattering is Assuminakee.>k-e->1 and using the larae-arqument
proportional to the degree of Debye shielding, characterized ° "= fo% t?]eo Begsgl functions o?]e findsg 9
by kp. Hence, if the orbit size is much smaller than the P '

Debye length, the electron-ion interaction can be neglected (o) Al 1 N 1 i 1 1

; L (€)= | —— 4+ — > T~ |
for |mpact.p.arameters ;maller than the or.b|t size. For an Pt €0/ 13| kpeo | Ko€oist N /—krznaik(zﬁnz
electron drifting perpendicularly to the polarization plane of (33)

a circularly polarized field, the dc component of an ion field
(as experienced by an electjomould not lead to large-angle
scattering for any impact parameter. There is then no need
smooth the Coulomb potential at small distances; a natur
cutoff, arising atp= €y, replaces the usual small-angle scat- (max 1
tering cutoff atp=b. As a result, In{ /€y replaces the Cou- nzl =~ IN Ny
lomb logarithm.

However, the ac component of an ion figlas experi-
enced by an electrorcan lead to large-angle scattering, so A 1
the validity of the small-angle approximation for distances Vpiteh( 50)%3 QJF %'n Aql, (34)
larger thanb has to be examined. Using Eq27) and (28)
and assuming; = 7/2, andv os<v, yields

This series is clearly convergent, since, forn, ., each
It(gzrm of the series scales asni/ In practice, the infinite
asieries(33) can be terminated at= n,,. Using

for np.>1, we obtain

where A;=Kpvlw. For kg/kp of order a few, and
In(kmao/w)>1, the last term will dominate.

86~ —bl(p—ep), The nonlinear reduction in the collision rate is roughly

given by

for p~ €y. Physically, this clearly means that the deflection is _
| ; ; ; Vpitch( €=0) IN(Kmax/Kp)
argest when an electron orbit almost touches the ion, since Q= ———~kpeg———. (35)
(p—€p) is the distance of an electron orbit from the ion. Vpitch( €0) IN(Kmax/Ko)
Hence, smoothing the ion potential at distances smaller thalNote that the reduction in the collision frequency is not due
b indeed removes large-angle collisions, as could be exsimply to an increase in the velocity to the oscillation
pected at weak illuminations. Using Eq&7) and(28), one  velocity v .
can similarly show that at intense illuminationggssv 1. NONLINEAR INVERSE BREMSSTRAHLUNG

small-angle scattering is also ensured, since ) _ )
This section presents a calculation of the average energy

v b exchanged between an oscillating electron and the hf field, in
66~ — v p—eo the presence of a random ensemble of immobile ions. The

os¢ 0 collisional damping of a hf wave, also known as inverse

The electron-ion collision frequency can then be writtenbremsstrahlung, originally studied in Ref. 1 for weak fields,

as was later revisited by a number of authors who have in-
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cluded nonlinedr*'°and quantum-mechanidaleffects. Us-  Note that, to obtain Eq438) and (39), we used the spatial
ing a different approach, the nonlinear results of Ref. 3 for dhomogeneity of the hf wave, thereby neglecting any possible
linearly polarized hf field, are confirmed. In addition, the wave-particle resonances. Hence, B8) contains no direct
nonlinear inverse bremsstrahlung of a circularly polarizedvave-particle energy exchange, apart from the collisional ex-

wave is obtained. change.
The energy exchange between the electron and the EM Integrating Eq(40) over time, yields
wave is estimated to second order #ef) by integrating the 5 n=to
rate of energy exchangeeE- v along the perturbed electron f=R— —4mize f _gun(k)k‘]n(k é0)

trajectory. The energy exchange obtained is then averaged
over a random distribution of ions. Since the presented cal- (Koo —no)t
culation considers the interaction of an electron with a single x eik-pgik-vtj _ % , (41)
ion exactly, the effects of the correlated collisions are natu- (k-v—nw—ig)?
rally included. Having obtained the rate of energy exchangg where ¢ is an infinitesimal positive number introduced to
for a particle with a given momentum, the overall rate of

ensure causality. Rewriting the ion force as
inverse bremsstrahlung can then be obtained by integrating,
over the electron momentum distribution, the rate of energy . )
exchange for particles with a given momentum. For a Max-  Fion(t)= —|47rZe2J7wdt’ wa Wu(k)f(k,t—t')
wellian distribution, the results of Ref. 3 are recovered. On o
the other hand, for an anisotropic distribution, the inverse x ke~ kot (42)
bremsstrahlung is quite different: A hf wave can be amplified o ) )
by the particles which primarily move parallel to the wave @nd substituting Eq42) into Eg. (39), results in

polarization. (47rZe2)2 n= +oc m= +oc 4%k
Defining a vector-potential of the hf wave as SE=— (277)3
n——oc m——oc
. dAg s ..o
E(t) = 37 (36) f d k]_ \]n(k GO)Jm(kl' Eo)l_)
dt XUn(k) Wun(kl) (E.J—nw—ig)z K1

the total energy exchange between the wave and the electron

S S s o - o + - PN
can be calculated as _goei(kl—k>.vtje—i<kl—k).pf dt e i(ki—K)-vt
+ o S S o
5E=—ef dtv-E X e l(n=Melcos pt, (43
Only the terms withm=n=*1 survive the averaging over
e + o R R R ) N
_ _f_ dt Eoy(Fo)- Ao, 37) randomt;, which reduces Eq43) to
(4772e2 el
where the last step involved integration by parts. Assuming oE=— n__m (

that the EM field is linearly polarized, as given by Ea),

the vector potential, can be expressed as an(E' €0)Jn(K1 €)

(K-v—nw—ig)?

d3k
XU | 5sUn(ka)

> Mw -

Ag=——€q COS wt. 38 L E s
o e 8 x e 1ki=kr2 1 5(ky,— Ky). (44)
In Eq.(37), r(t) is the location of the electron at timeThe ~ The rate of energy exchange, averaged over collisions
lowest order nonvanishing contribution to inverse bremsWwith many ions, is given by
strahlung can be obtained by evaluating the integral in Eq. dE
€37) aalong A the perturbed electron trajectory: E:vn‘f d?pSE(p). (45
re(t)=ro(t) +rq(t). Hence, Eq.(37) can be recast in the
form SubstitutingSE from Eq. (44) into Eq. (45) yields
e+ . _ . . dE (471-Ze2)2n o< +°° d3k
5E: Ef_w dt(rl'V)Fion'Ao, (39) a J n_ioc (27T)3

where the first-order perturbation to the electron trajectory is (k 60)

obtained by integrating XUy (k)kzm- (46)

n=+w© . . . . .
. I477262 (kORI (K- As Eq. (46) indicates, then=0 term vanishes since in the
1= n,,x )3 JKJn(K: €0) absence of external field a collision of an electron with an
L immobile ion is elastic. Following a very similar procedure,
x elk-peTik-vtjgilk-v=no)t (40)  the rate of collisional energy exchange between an electron
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and a circularly polarized wave can be derivede|fis the

normal to the plane of polarization, the rate of bremsstrah-

lung is given by

dEC"C (4772e2)2n| "
dt m

f d3k
(2m)3

nJ3(|kxe, |eo)

n=—x

UA(k)k? (47

(k v—Nw—ig)?

dE Amw d3k
i 2 —ng(k €0)k2U2(K)v

n=—c

To compare the rate of bremsstrahlung obtained here

with the findings of Refs. 1 and 3, the expressid®) is
integrated over a Maxwellian distribution in giving

d(E 4Ze2 " . [ dk
< > ( T njw &0 fo(v)fw

dt -3 2

nf—x
2
Ja(k- €o)
X U2(K)k? —— , 48
n() (k- v—nw—ls)2 “9
where
- 1 21m. 2
fO(U):(ZTch)S/Z eXF(—U /thh)' (49)
Using
1 k0 1
(k-v—nw—ig) k? v K-v—nw—ie
v 9 1 50
v? KK-v—nw—ie
and integrating Eq(48) by parts, yields
&(E) (4w2e2)2nw” 0 dk
TR n_Zw )3Un(k)
K-dlavf,
XnJ3(K- €g) f d%# (52)
K-v—nw—ie

Since w>w,, we usede(k,nw)=1. Recognizing that the
imaginary part of the integral ove®v is proportional to the
imaginary part of the plasma dielectric function,

k lguto(v)
v—nw—ls

D(K,w)=1— —;J

and noting that in the high-frequency linjib|~1, so that
J(1/D)~ —73D, we find that Eq(51) is identical to Eq(20)

Jd L .
~E5(k-v—nw) (52
for a linearly polarized field, and
dE Ame"<” [ d% - .
T 072 |z ndadlkxe e kUR(k
Jd . .
-Eé(k-v—nw) (53

for a circularly polarized field.

The significance of Eq$52) and(53) is that they predict
the rate of inverse bremsstrahlung foriadividual electron,
not the averaged quantity for the entire Maxwellian distribu-
tion. The rate of energy exchange, given by EG®) and
(53), can be averaged over any distribution function of inter-
est, isotropic or anisotropic . In addition, wave-particle reso-
nance can be used to target electron sub-populations of
choice.

To illustrate the usage of Eq52), consider the linear
(n=1) inverse bremsstrahlung. For the purpose of this cal-
culation, choos&J (k) in the form given by Eq(8). Expand-
ing J,(K- €g) ~ (K- €5)/2 and using Gauss’ theorem, E§2)
can be integrated by parts. The boundaries of integration are

chosen to be surfacé&|=0 and|k|=Kpmay. In order for a

particle to exchange energy with the wave, its velocity
should satisfy
w
v> (54)
kmax

Without loss of generality, assume that hf wave is polar-
ized in x—z plane, making an angl@, with the particle
velocity. The angled, satisfies

2
€g° U

cog 01—%
€U

(55

Thus separating the total energy exchange, given by Eq.
(52), into the boundary contributiod E®/dt at the surface

|K|=kmax @nd the volume contributiod E*/dt, yields

of Ref. 3. To complete the comparison with Ref. 3, we noteand

that the rate of inverse bremsstrahlung, given by (&d), is

derived as a sum of individual energy exchanges with dis-

tinct ions. This shows that the asserti@i. Ref. 3 that the
effect of correlated collisions is not contained in E20) of
Ref. 3 is not correct.
Equations(46) and (47) are simplified by noting that
1
Z—ie

J =m8(z),
yielding
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dE° A | , 3(ev)? fkmaxdk ) w?
TR e ) B e
(56)
dE® A (60 v)? 1 ) 3(€0-v)?
dt v_gmw v2 +2 €0~ v2
w2
>< 1_ kza)pz (57)
m

Note that the combination

.
(63—3(602") )

v
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averages out to zero for any isotropic velocity distribution.
Hence, because of what remains of the sum of the boundary
and volume contributions, the wave is damped for any iso-

tropic distribution function. On the other hand, an aniso-
tropic electron momentum distribution can lead to wave

) . This means that electron-ion collisions may have a small
growth. For instance, it follows from E@56) that a stream . : i .
of particles, moving with constant velocity along the di- effect on the high-frequency motion of electrons in a high-

rection of an EM wave, gives up energy to the wave, intensity wave, but may significantly affect the slow electron

2
Vpitch( €o) __Vosc

Vorend €0) - EZ 63

drifts.
dE  Aln A; mv3g,
a T a2 8
while a stream of particles moving perpendicularly to the
wave absorbs the energy of the wave IV. CONCLUSIONS
2
dE _Aln Ay Mug (59 In summary, damping of a high-frequency, spatially ho-
dt 203 2 - mogeneous electric field by electron-ion collisions in a

In the ab f electron-i lisi the hf electri plasma has been calculated. First, the energy exchange of an
f Idr'] e/2a s<tancfe ?] clec r'?hn-tlr?n clo |f|ons, | e't CleCNCindividual electron with the wave is computed in the pres-
€ld 1S arfc OUt Of phase Wi € electron velocily, SO N0 gpeq of 5 single ion. Second, the energy exchange is aver-

energy is exchanged between the electrons and the Wavgged over random ion positions. Third, the energy exchange

?Nhen elte)ctlron-lon colllsuI)lns tz?]r;{lgclgded, ;he avert?‘ge p.hasgveraged over an electron distribution is calculated. This pro-
ag can be farger or smaller » depending on the orl- .o 4,,rq unambiguously accounts for correlated collisions, i.e.,

entation of the Instantaneous direction of the _elet_:tron OIrIfEhe effect of an oscillating electron repeatedly returning to
with respect to the direction of the wave polarization. NOte same ion during a binary collision. The correlated colli-

that many e_Iectr_on—|on collisions are assumed to take placgions are naturally included in the nonlinear extension of
before the direction of the electron drift changes due to p'tChDawson—Oberman mod2l

angl_(re sca}terllntg. the b trahl fricti Hicient f The average force, exerted on an oscillating electron by
0 caiculate the bremsstraniung friction coetlicient for, single ion, has also been calculated. The nonlinear rate of

an electron drifting perpendicularly to the plane of a Circu'elec'[ron-ion pitch-angle scattering has been evaluated for
larly polarized hf wave, assume a large-amplitude hf field,[

. . wo simple casegi) an electron in a linearly polarized hf
_Srl;](:;]tgzt’(%%? svi;n?arlli?ieussi)](k) in the form given by Eq(9). wave drifting parallel to the polarization direction afig an

electron in a circularly polarized hf wave drifting perpen-
dE A mvgsc v "1 1 dicularly to t_he polarizatioq plane. In the first case electr_ons
—_—~ s — 2 — becomenonlinearly opaquegi.e., they slow down faster. This
effect become large when the oscillation velocity becomes
(60 comparable with the thermal velocity. In contrast, in the sec-
Again, the convergent seri¢60) can be estimated by trun- ond case, electrons becomenlinearly transparent

cating it atn,. Introducing the rate of nonlinear brems- It is conjectured that if only selected groups of particles

strahlungvy,en{ €9) through the identity are strongly perturbed by an EM wave, the nonlinearly-
induced transparencfor opacity effect might be used to

d_E: —y 2 14 (61) modify the electron distribution function. Selecting, for ex-

dt bren? osd % ample, electrons traveling in a particular direction might be

achieved through Landau resonance, or through a cyclotron
resonance in magnetized plasmas. To calculate accurately
this effect requires extending our analysis to EM waves with

Vorend €0)~ — va Ay (62 nonvanishing wave number. To estimate the magnitude of

0s¢ the effect, assume a circularly polarized EM wave, propagat-
Note that, for this particular example of an electron driftinging in the positive z-direction, with phase velocity
normally to the polarization plane of a CP wave, the rate o y~c>vy,. In a plasma of densitye=10" cm 2 and
nonlinear bremsstrahlung igegative (inverse bremsstrah- temperatureT,=100 eV, an electromagnetic wave with
lung). It would be positive, for example, for an electron drift- wavelengthh=1x and intensityl >5-10* W/cn? might
ing along the polarization direction of a LP wave. then drive current densities of ordé=40 MA/cn?.

We now compare the two collision rates for strongly Finally, note that, while electron-electron collisions do
illuminated plasmas. In Sec. Il B we derived E84) for the  not contribute to the dissipation of long-wavelength electro-
rate of nonlinear pitch-angle scattering of an electron, drift-magnetic waves, they do contribute to pitch-angle scattering
ing perpendicularly to the polarization plane of a CP field.of the electrons. The inclusion of electron-electron collisions,
Comparing Eq.(62) to Eq. (34), we find that in a strongly however, appears to be relatively straightforward using the
illuminated plasmas, where,.v, the rate of pitch-angle methods presented here, since they are not affected by the
scattering may exceed that of the bremsstrahlung, namely,presence of a uniform hf field.

obtain
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